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Abstract 

Finding patterns in large, real, spatio/temporal data 
continues to attract high interest (e.g., sales of products over 
space and time, patterns in mobile phone users; sensor 
networks collecting operational data from automobiles, or 
even from humans with wearable computers).  In this paper, 
we describe an interdisciplinary research effort to couple 
knowledge discovery in large environmental databases with 
biological and chemical sensor networks, in order to 
revolutionize drinking water quality and security decision 
making. We describe a distribution and operation protocol 
for the placement and utilization of in situ environmental 
sensors by combining (1) new algorithms for spatial-
temporal data mining, (2) new methods to model water 
quality and security dynamics, and (3) a sophisticated 
decision-analysis framework. The project was recently 
funded by NSF and represents application of these research 
areas to the critical current issue of ensuring safe and secure 
drinking water to the population of the United States. 

1. INTRODUCTION 
The need for research to link the power of information 

technology and decision making with the complexity of 
environmental problems is compelling in its logic and 
motivation, but quite challenging in its demand for 
interdisciplinary skills and knowledge.  Environmental 
problems involving water quality and security have a wide 
scope of the entire planet, a daunting complexity at both 
the microscopic and ecosystem level, and a profound 
relevance to our daily lives – clean waterways and secure 
water supply are our best protection from communicable 
disease and the effects of chemical and biological 
contaminants either accidentally or intentionally released 
to  our environment.  These centrally important problems, 
with their high degree of knowledge domain inter-
connectedness and varying scales of spatial and temporal 
aggregation, are greatly in need of, and ideally suited for, 
new techniques in analysis and interpretation that are 

emerging in the area of information technology and 
decision making. 

To address these problems, joint research is needed 
between environmental science and data analysis for 
decision-making. This research is made possible by three 
trends.  First, there has been a rapid expansion of large 
environmental databases, easily accessible, from the U.S. 
Environmental Protection Agency (EPA), U.S. Geological 
Society (USGS), and other agencies.  Second, key 
developments in IT research and fast, scalable 
implementation of older tools from machine learning and 
statistics enable more extensive inferences to be drawn 
from these data, thus improving decision-making 
potential.  Third, the pace of development in biological 
and chemical sensing technology indicates that low-cost, 
easily emplaced environmental sensors will be available 
soon.  The first two trends make possible, and the third 
makes imperative, research to develop a distribution 
protocol for these sensors, a data-collection and storage 
protocol for the potential data that they will supply, and an 
integrated model to interpret and “mine” the data made 
available by this extensive “pulse-taking” of the natural 
environment.  Further, security concerns regarding 
detection of intentional contamination of drinking water 
have focused our attention on the need for enhanced 
sensing, data evaluation, and decision-making within 
drinking water distribution systems. 

The goal of the research presented in this paper is to 
“leapfrog” over the current limitations in sensor design, 
capabilities, and cost and to look forward to the day when 
these technologies are ready for deployment.   Instead of 
additional research in the already crowded field of those 
developing better, cheaper, longer-lasting sensors, we 
evaluate current information on drinking water treatment 
and distribution systems in order to inform the eventual 
placement and use of these sensing technologies.   The 
scenario that we want to avoid is the sub-optimal 
placement and uncoordinated use of advanced sensing 
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technologies within the natural and engineered 
environment. In addition to current cost limitations, in situ 
sensor placement always carries with it the potential to 
affect the environment during sensor placement or 
malfunction.  Likewise, inefficient or disorganized 
monitoring, data-storage, and data-evaluation protocols 
may result in data that are unusable for regulatory 
decision-making, planning, or rapid response to an 
external threat.  Our goal is to avoid these start-up 
problems that may be associated with poor distribution and 
utilization of in situ sensing technologies. We produce a 
distribution and operation protocol for the placement and 
utilization of in situ environmental sensors by combining 
(1) new algorithms for spatial-temporal data mining, (2) 
new methods to model water quality and security 
dynamics, and (3) a sophisticated decision-analysis 
framework.    

In this work, we describe the nature of the sensor 
placement and data structure challenge associated with 
water security monitoring.  Further, we describe the 
integrated research approach we are undertaking to 
advance spatial-temporal mining of environmental data. 

2. RELATED WORK 

2.1 Spatial-Temporal Data Mining 
Spatial-temporal data mining is an emerging field.  

Traditional data mining works on Association Rules1, 
looking for patterns of the form: “Customers who buy 
bread, also buy milk, with probability x%.”  There is 
significant literature in this arena (see for example, the 
recent book by Han and Kamber2).  Extensions to temporal 
and spatial patterns are limited, typically looking for rules 
of the form “customers who buy cars now, will buy tires in 
2 years.”3 Algorithms for spatial patterns are very limited, 
using ad-hoc thresholds and neighborhood radii.  We use 
multi-resolution algorithms that will search for patterns for 
all scales of time and space, using fractals.  Related work 
includes similarity search in time sequences, where the 
typical algorithm is to approximate each time sequence 
with its first few Fourier coefficients4,5 or with a piece-wise 
linear approximation.6 Our work will use more 
sophisticated matching algorithms to detect correlated 
sequences. Specifically, we will use (a) multivariate linear 
regression, for co-evolving time sequences and (b) non-
linear models, to capture non-linear phenomena (like 
bursty/auto-catalytic/self-similar traffic patterns, as well as 
time sequences that exhibit non-linear correlations).   

2.2 Water-quality Monitoring and Modeling 
The National Academy of Engineering declared water 

and wastewater treatment as one of the top five 
engineering accomplishments of the 20th century.  Water-
quality improvements related to sewage treatment 

awakened society to the potential for water transmission of 
biological and chemical contaminants, and amendments to 
the Safe Drinking Water Act continue to increase the 
number of chemicals that we monitor in our drinking 
water.  The recent security concerns regarding drinking 
water have added to the complexity of monitoring and 
decision-making; biological detection and early warning 
are critical for water security.   Monitoring water quality 
has always been a labor-intensive process, and most 
critical water-quality parameters (e.g., presence of 
pathogenic microorganisms) require sampling and ex situ 
analysis.  These data are collected within the distribution 
system by individual water providers for regulatory 
compliance.  Rather than duplicating the data collection or 
organization provided by these agencies, we focus on 
knowledge development through analyzing existing 
databases using classic data-mining algorithms and the 
development of new algorithms designed to handle the 
unique spatial and temporal variability in environmental 
datasets.   

3. PROBLEM STATEMENT 
The goal of the present project is the development of 

new data-mining techniques for knowledge discovery in 
water-quality databases and the design of an 
implementation strategy for using this knowledge 
discovery, related watershed and water distribution 
models, and a decision framework, to inform the 
development and placement of in situ sensor networks. 
Thus, our goal is not specific to one environmental 
problem, but will produce a generalizable solution to the 
issue of interpreting and using environmental data. For the 
purposes of demonstrating the types of issues that might 
benefit from this work and for validation we present a 
possible scenario of use within a water distribution system 
in this section. This example is only one of many 
important relationships in water systems that we will 
address in order to inform sensor placement and policy 
decision making.   

Consider in this case that we want to detect the 
presence of pathogenic microorganisms in a water 
distribution system.  Pathogens are generally small and 
easily transported in water.  Sources of pathogens to a 
water distribution system include: (1) source water 
contamination followed by improper or insufficient 
treatment, (2) regrowth of organisms due to insufficient 
disinfectant residual in the distribution system, (3) 
contamination due to transient pressure drops leading to 
infiltration of groundwater into water pipes, (4) 
contamination due to incorrect cross-connections with 
sewer lines, and (5) intentional addition of pathogenic 
organisms at the treatment plant or in the distribution 
system.   
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Several treatment methods are used to remove 
pathogens from source water.  Drinking water treatment 
involves coagulation, settling and filtration as well as 
chemical disinfection.  Drinking water regulations require 
finished water to be free of pathogenic organisms to the 
best of our detection methods.  When detection methods 
are insufficient, standards require drinking water systems 
to meet critical treatment goals that are associated with 
known removal levels.   

The major removal mechanism for pathogens in the 
distribution system is the maintenance of a disinfectant 
residual from the treatment plant to the consumer's tap.   
Many pathogenic organisms are very sensitive to chlorine, 
which is routinely added to treated water before release 
into the distribution system.  This chlorine residual in the 
water is designed to inhibit regrowth of organisms in the 
pipes and destroy any organisms that enter the distribution 
system accidentally.   Whether the disinfection residual 
would also destroy organisms released to the system 
intentionally would depend on the type and concentration 
of organisms and where in the system they were 
introduced.  Additional factors that can affect the impact 
of introduction of pathogens into the distribution system 
include (1) water temperature, pH, turbidity and oxygen 
concentration, (2) water demand in the system, and (3) 
distribution system configuration. Many of these 
conditions will vary in time and space in the distribution 
system, and pathogens are likely to be affected in a 
synergistic manner.  The relationships between varying 
distribution system conditions, varying loading of 
pathogens to the system, and the survival and persistence 
of specific organisms -- indicator organisms or high-risk 
human pathogens -- is clearly an area where extensive 
monitoring coupled with modeling can be used to establish 
effective early detection systems. 

4. RESEARCH APPROACH 
We expect that data-mining techniques coupled with 

expert knowledge of water-quality parameters will result in 
knowledge discovery from the wealth of water-quality data 
currently available. Coupling prior domain knowledge of 
mechanistic energy and mass-balance relationships with 
the discovered knowledge of observed relationships 
between water- and sediment-quality parameters, stream-
ecosystem parameters, time and flow characteristics, and 
anthropogenic effects on watersheds helps develop a 
holistic watershed model, fully informed by all available 
data.  This watershed model provides information on 
source water for drinking water treatment and is coupled 
with models for water distribution systems, also informed 
by knowledge discovered through data mining.  The 
models developed through knowledge discovery in 
databases allow us to postulate suitable locations and 
monitoring timetables for arrays of environmental sensors 

placed to most effectively monitor watersheds and water 
distribution systems.  

4.1 Scenario of use 
Our work in the water-quality databases begins with 

single-source, single-attribute retrievals of the form “get 
all the values of pathogens reported in source water in a 
single watershed from a single data source (i.e., EPA's 
STORET) for the range of positions x+Dx and times 
t+Dt.” We then move on to multi-attribute or multi-source 
retrievals of the form “get all the values of pathogens and 
turbidity and flow in all watersheds that experienced 
rainfall greater than 2 inches at locations x+Dx and times 
t+Dt” or “get all the values of organism growth in the 
distribution system and levels of dissolved organic carbon 
(DOC) in the source and finished water for positions x+Dx 
and time t+Dt.” These queries are likely to require 
multiple databases (e.g., the EPA Storet database of 
chemical and biological parameters and the water 
treatment system monitoring data for microorganisms). 
Following development of the necessary spatio/temporal 
multi-source retrieval system, we search for patterns in the 
source water data of the form “if rainfall exceeds 0.5 
inches in the watershed, within four hours pathogen levels 
at locations x, x1...xi will exceed regulatory allowances by 
k, k1...ki% for y, y1...yi hours, thus necessitating increased 
treatment diligence at the plant.”  We also search for 
patterns in the distribution water quality of the form “if 
DOC in the source water exceeds 2 mg/L, regrowth of 
nonpathogenic organisms within the distribution system at 
locations x, x1...xi impairs detection of pathogen incursions 
by k, k1...ki% for y, y1...yi hours in our monitoring system.” 
Rainfall and pathogen levels have a well-known (but not 
quantified) relationship.   Likewise, DOC and regrowth of 
organisms has a well-known relationship, although the 
affect of this on our ability to design a sensor network for 
pathogen intrusion detection is unclear.   We also mine for 
novel relationships within the source watershed and the 
distribution system.  Are natural pathogens in the 
watershed related to high nutrient levels (because fertilizer 
runoff from farms and pathogen runoff from feedlots are 
co-incident)?   If they are correlated, does the correlation 
persist in time and space?  Are organisms more likely to 
regrow in the distribution system because of a certain type 
of DOC in the water? Understanding these relationships 
assists with locating sensors and identifying pathogen 
inputs into the source water and with locating sensors 
within the distribution system to monitor routine organism 
regrowth and to distinguish this from intentional pathogen 
loading to the system. 

Following pattern discovery, we use the newly 
developed patterns to modify the currently used “quasi-
mechanistic” models with statistical models that relate key 
environmental conditions with pathogen die-off, transport, 
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and pathogen loading in the watershed and the distribution 
system.  We use the new informed model to ask “what-if” 
scenarios, generating large “pseudo-datasets” to evaluate 
differences in natural and intentional pathogen loading to 
watersheds, possible future long-term changes in natural 
pathogens (e.g., due to changing land use patterns), 
possible short-term changes related to intentional 
introduction of pathogens to the watershed or the 
distribution system, , and possible sensor network locations 
and query schedules.  We use these pseudo-datasets to 
hypothesize about the effects of unpredictable natural and 
anthropogenic events (e.g., a flood, an increase in wildlife 
concentrations or illness rates, the intentional release of 
pathogens) and possible future scenarios (e.g., higher 
populations, improved water treatment methods, 
alternative distribution systems).   For example, given a 
distribution system with two critical reservoirs, would 
covering one of the reservoirs or adding in-system post-
treatment chlorine boosters lead to a need for more or 
fewer sensors to evaluate water safety.  Analyzing these 
scenarios will inform decisions regarding monitoring 
locations for a network of sensors to provide “early 
warning” to a natural or intentional pathogen event.  

4.2 Steps towards achieving the goal 
In this section we describe the various research components 
necessary to achieve the project's goal.  

4.2.1 Assembling Relevant Water-quality Data 
Research conducted by our team has explored the use 

of Bayesian methods and Bayesian Belief Networks (BBN) 
to evaluate whether chemical evidence at monitoring wells 
is suggestive of a landfill leak7 or of natural biochemical 
reactions of contaminants in ground water8. Similar 
methods can be applied to surface waters.  These results 
suggest application of KDD to water-quality databases can 
provide predictive insight even using limited, though well-
chosen, characteristics.  We expect use of a more complete 
database of water-quality parameters and a more extensive 
understanding of issues in water quality to yield improved 
understanding of the complex relationships inherent in 
water quality and watershed ecosystems. 

To design an appropriate database schema for the data 
involved in this research, we examine the data available in 
various databases around the country related to source and 
finished water quality.  EPA, for example, maintains 
water-quality information for the nation's waters in two 
major database management systems (DBMSs): LDC (data 
before 1998) and STORET (data after 1998). STORET is 
managed by an Oracle DBMS, and stores data in three 
tables.  Environmental locations are indexed by stream 
reach number, which can be correlated with other data 
stored in GIS format. Based on these observations, our 
schema incorporates (a) historical and current data from 

the above databases and (b) potential data from the in situ 
biological and chemical sensors that are likely to be 
distributed in the environment. The developed schema:  
• groups information in an optimal way to obtain fast 

answers to data-mining queries, 

• supports translation to and from eXtensible Markup 
Language (XML), in order to be able to incorporate 
XML data from the Internet and for compatibility and 
comparability of the results, 

• is reinforced with active rules that, following the 
model explained in 9, supports scientific workflow 
design for experimental studies. 

4.2.2 Data Mining and Knowledge Discovery 
Discovering knowledge in environmental data 

involves temporal data mining, pattern discovery, and 
spatial data mining. Using feature extraction, we can map 
each time sequence into a low dimensionality vector, by, 
e.g., keeping the first few Fourier or wavelet 
coefficients.4,10 In addition, MUSCLES 11 involves data 
mining for co-evolving time sequences, like network-
traffic data or currency-exchange data. MUSCLES works 
well and gives significantly lower reconstruction errors for 
real network data when there are linear correlations. In 
that case we can spot correlated time sequences, e.g., a 
spike in chemical “x” is followed by a spike in chemical 
“y” after 3 days, and a dip of organism “w” after 5 days.  
In the water-quality setting, however, several of the 
governing differential equations might be non-linear. Our 
approach in that case is twofold: first, if the distribution is 
“80/20” 12 we expect 80% (or p) of an organism or 
pollutant to appear in 1-p of the time slots. Second, we use 
lag-plots: a sub-sequence t(k+1), ..., t(k+m) corresponds to 
an m-dimensional vector.  Nearby vectors will be 
clustered, with the so-called Spatial Access Methods 
(SAMs), like the R-trees13, and thus can be quickly 
retrieved for nearest neighbor searches.  

Spatial data mining operates on a set of n-dimensional 
points or regions, and reports clusters, patterns and 
outliers. In this context, we look for rules of the form 
“whenever we see chemical 'x' in the finished water, we 
also see chemical 'y' in the source water, and organism 'w' 
in the distribution system.” The task is closely related to 
temporal data mining, with the extra difficulty that we 
have two or three spatial dimensions instead of just one. 
Spatio/temporal data mining is even harder, because of a 
subtle difficulty: the relative importance of the time 
dimension versus the spatial ones are unclear. Therefore, 
we extend the traditional “Association Rules”14 to handle 
spatial attributes in the way we need it.  To study 
separability, we extend previous algorithms15 to handle 
several sets of points in space (e.g., one set of points for 
each chemical/organism in high concentration), in order to 
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group chemicals and organisms that appear in nearby 
positions, and report them to the analyst. Finally, we use 
the so-called “correlation integral” from physics and 
fractals to performa clustering: if the log plot of the 
cumulative distribution function of the pair-wise distances 
among the points of the set is straight with slope “s”, the 
dataset is self-similar (= fractal), with intrinsic 
dimensionality “s” and it is pointless to look for clusters. If 
the plot has plateaus, they could indicate clusters. 

Finally, as with nearly every set of experimental data, 
reconstruction of missing values is often needed in this 
work.  “Linear regularization”6 gives consistently lower 
reconstruction error than the uniformity assumption, and is 
linear on the length of the time sequence. We extend linear 
regularization to (a) apply to higher dimensions while 
keeping it fast (because the required matrices grow quickly 
with the dimensionality), (b) find the solution that satisfies 
differential (or difference) equations, as opposed to being 
smooth and (c) reward reconstructions that follow these 
correlations among sequences.  

4.2.3 A Dynamic Water-quality Model 
Environmental models are developed for scientific 
purposes and as tools for applied policy development, 
implementation, and management.  Models provide an 
organizing and integrating framework for fundamental 
knowledge on environmental processes and interactions.  
When properly formulated, tested, and corroborated with 
observed data,16,17 models can provide a foundation and 
focus for decision support in the development of 
environmental policy.   

Watershed and distribution system temporal or spatial 
detail modeling involves complex transport and reactions 
conditions.  Existing models often make assumptions that 
are unacceptable within the sensor deployment framework.  
For example, many models assume complete mixing over 
the cross-sectional area of a stream in areas where 
characterization of horizontal or vertical gradients in 
concentration are important for interpretation of sensor 
monitoring data. Our model enhancement work focuses on 
expanding existing models for watershed and water 
distribution systems to address these complexities as well 
as to add new mechanistic representations for multiple 
biological reactions and the effects of chemical and 
biological mixtures.    By coupling our model development 
with knowledge discovery in existing environmental 
databases, we can incorporate statistically relevant 
microbial population dynamics and mixture effects for 
which mechanistic understanding is still unavailable. 

The importance and role of sensitivity and uncertainty 
analysis is now recognized in virtually all domains of 
model application.18-20 We systematically study model 
sensitivity and uncertainty as part of the parameter 

estimation process to identify which aspects of model 
structure can be resolved with available laboratory and 
field data, and provide guidance on those additional data 
and studies with the most potential information value (i.e., 
those most likely to reduce key uncertainties in model 
predictions).  Uncertainty analysis is conducted using 
advanced Bayesian methods and Monte Carlo procedures 
that combine prior scientific knowledge with the 
information in the available datasets.21   Numerical 
methods that combine classical parameter-estimation 
procedures and Bayesian simulation techniques, such as 
Markov Chain Monte Carlo and efficient sampling 
techniques that quickly find and span the posterior 
parameter space, are used and are being advanced for this 
purpose.22   

4.2.4 Data Sensing Array Decision Making 
Our decision making research focuses on large sets of 

hypothetical data.  First, reconstructed data for past 
conditions is used to test the models' predictions against 
the historical data.  Second, we generate hypothetical data 
for a wide range of initial conditions and potential future 
trajectories.  In these hypothetical worlds, we evaluate 
different sensor-deployment plans.  Each environment 
(watershed or distribution system) has multiple possible 
development trajectories (scenarios), each with significant 
uncertainty, requiring the generation of thousands of 
pseudo-data sets.  These datasets are used to evaluate 
sensor development, deployment, and querying schedules 

For example, we determine the spatial and temporal 
data needs for identifying an intentional introduction of a 
pathogenic organism into a water-distribution system prior 
to large-scale human health effects.  The location and 
timing of data collection is affected by the sensitivity of the 
in situ sensors to changes in the concentration of 
controlling parameters (e.g., flow, disinfectant residual 
concentration, and organism concentration).  Thus, our 
work informs sensor development by demonstrating the 
performance trade-offs inherent in sensor sensitivity and 
selectivity design decisions.  By coupling cost/benefit 
modeling with our sensor-deployment plans,23 we are able 
to evaluate when the use of new, but potentially more 
expensive, in situ techniques provides more value than 
traditional monitoring.  Hypothetical datasets also allow 
evaluation of methods to plan and query sensor networks 
for environmental monitoring. This methodology is 
necessary because existing optimization processes for 
network sensor locations are limited to linear processes24-26 
and the water-quality dynamics are highly nonlinear.  25,26  

5. SUMMARY 
Widespread distribution of sensor networks in the 

natural and built environment will eventually allow for 
extensive “pulse-taking” of our world.  Large datasets 
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produced by these sensor networks will require 
sophisticated data mining and modeling to enable optimal 
decision-making.  Water quality sensing is an area ideally 
suited to testing new algorithms for spatial-temporal data 
mining and new methods to model coupled non-linear 
processes.  Security concerns regarding detection of 
intentional contamination of drinking water have focused 
attention on the need for enhanced sensing, data 
evaluation, and decision making within drinking-water 
distribution systems.   The work described here links 
development of new knowledge discovery and numerical 
modeling methods with decision making research designed 
to evaluate and optimize sensor deployment plans. 
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